Optical analysis of CH3NH3Sn x Pb1-x I3 absorbers: a roadmap for perovskite-on-perovskite tandem solar cells.

نویسندگان

  • Miguel Anaya
  • Juan P Correa-Baena
  • Gabriel Lozano
  • Michael Saliba
  • Pablo Anguita
  • Bart Roose
  • Antonio Abate
  • Ullrich Steiner
  • Michael Grätzel
  • Mauricio E Calvo
  • Anders Hagfeldt
  • Hernán Míguez
چکیده

Organic-inorganic perovskite structures in which lead is substituted by tin are exceptional candidates for broadband light absorption. Herein we present a thorough analysis of the optical properties of CH3NH3Sn x Pb1-x I3 films, providing the field with definitive insights about the possibilities of these materials for perovskite solar cells of superior efficiency. We report a user's guide based on the first set of optical constants obtained for a series of tin/lead perovskite films, which was only possible to measure due to the preparation of optical quality thin layers. According to the Shockley-Queisser theory, CH3NH3Sn x Pb1-x I3 compounds promise a substantial enhancement of both short circuit photocurrent and power conversion efficiency in single junction solar cells. Moreover, we propose a novel tandem architecture design in which both top and bottom cells are made of perovskite absorbers. Our calculations indicate that such perovskite-on-perovskite tandem devices could reach efficiencies over 35%. Our analysis serves to establish the first roadmap for this type of cells based on actual optical characterization data. We foresee that this study will encourage the research on novel near-infrared perovskite materials for photovoltaic applications, which may have implications in the rapidly emerging field of tandem devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells.

Perovskite-based solar cells have recently been catapulted to the cutting edge of thin-film photovoltaic research and development because of their promise for high-power conversion efficiencies and ease of fabrication. Two types of generic perovskites compounds have been used in cell fabrication: either Pb- or Sn-based. Here, we describe the performance of perovskite solar cells based on alloye...

متن کامل

Perovskite as Light Harvester: Prospects, Efficiency, Pitfalls and Roadmap

In the recent years, perovskite materials have attracted great attention due to their excel‐ lent light‐harvesting properties. The organic materials of these hybrid inorganic organic light harvesters are used as sensitizers and the inorganic materials have been used as light absorbers. The exceptional properties of these materials such as long diffusion length, high carrier mobility, affordable...

متن کامل

Methodologies for high efficiency perovskite solar cells

Since the report on long-term durable solid-state perovskite solar cell in 2012, perovskite solar cells based on lead halide perovskites having organic cations such as methylammonium CH3NH3PbI3 or formamidinium HC(NH2)2PbI3 have received great attention because of superb photovoltaic performance with power conversion efficiency exceeding 22 %. In this review, emergence of perovskite solar cell ...

متن کامل

Mixed Ge/Pb perovskite light absorbers with an ascendant efficiency explored from theoretical view.

Organic-inorganic methylammonium lead halide perovskites have recently attracted great interest emerging as promising photovoltaic materials with a high 20.8% efficiency, but lead pollution is still a problem that may hinder the development and wide spread of MAPbI3 perovskites. To reduce the use of lead, we investigated the structures, electronic and optical properties of mixed MAGexPb(1-x)I3 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of materials chemistry. A

دوره 4 29  شماره 

صفحات  -

تاریخ انتشار 2016